
With Apache Jackrabbit Oak examples

JCR 2.0 Authorization Fundamentals

by Vitaly Kiselev



Introduction with aem login prompt

Description: pictures of login prompts with different aem versions to familiarize 

with audience



1. input name

2. input password

3. press “Sign In”
We are signed in!



1. input name

2. input password

3. press “Sign In”

JVM, Runtime, 

OSGi, Apache Felix, 

Http Service, Jetty, 

Sling, CRX, ...

JCR 2.0 Repository

We are signed in!





Agenda

JCR 2.0 Security Authorization

Permissions

Capabilities

Access Control 

Management

Access Control 

Policies

Access Control 

Lists

Named Access 

Control Policies

Privileges

Principal 

Management

Restrictions

Principals

Access Control

Entries

Groups

mandatory

optional

mentioned



JCR

JCR - Specifications of the Java Content Repository API

Repository = File System + Database + other features

JCR 1.0 - JSR-170 from 17 Jun, 2005

JCR 2.0 - JSR-283 from 25 Sep, 2009

JSR - Java Specification Request



Relationship between JCR and Apache Oak

Apache Jackrabbit - a fully conforming implementation of JCR specification.

CRX - upgraded Jackrabbit repository was started to develop by Day Software 

Company.

Jackrabbit was developed in 2000-s years but in 2010-s its architecture doesn’t 

correspond to the modern web demands or it becomes too hard to implement 

needed improvements.

Therefore Apache Oak has been created which is a scalable and performant 

modern complementary implementation of the JCR specification.



Apache Jackrabbit Oak Architecture

JCR API

Oak Core

Oak API Jackrabbit API

Node Store API

Tar 

files
MongoDB RDBMS



JCR Security

JCR Security:

Authentication

Authorization

JCR has Session Management and hasn’t User Management.

Usually JCR Implementations add User Management.

Apache Jackrabbit (and therefore Oak) has User Management.



Difference between Authentication and Authorization

Authentication Authorization

greeting give a smoke lend money romantic date

anonymous + - -

collegue + + -

girlfriend + + +



JCR Authorization

Mandatory

Permissions Management

permissions

capabilities

Optional

Access Control Management

policies

lists

entries

privileges

restrictions

Principal Management



Permissions

Permissions (JSR-283, §9.1) encompass the restrictions imposed by any access 

control restrictions that may be in effect upon the content of a repository, either 

implementation specific or JCR-defined. Permissions are reported through:

boolean Session.hasPermission(String absPath, String actions)

void Session.checkPermission(String absPath, String actions) 

throws AccessDeniedException

The actions parameter is a comma separated list of action strings:

read (Session.ACTION_READ)

add_node (Session.ACTION_ADD_NODE)

set_property (Session.ACTION_SET_PROPERTY)

remove (Session.ACTION_REMOVE)

Methods for testing restrictions more broadly are provided by the capabilities.



Capabilities

Capabilities (JSR-283, §9.2) encompass the restrictions imposed by 

permissions, but also include any further restrictions unrelated to access 

control. For checking whether an operation can be performed given as much 

context as can be determined by the repository, including:

Permissions granted to the current user, including access control privileges

Current state of the target object (reflecting locks, checked-out status, retention and hold status 

etc.)

Repository capabilities

Node type-enforced restrictions

Repository configuration-specific restrictions

boolean Session.hasCapability(String methodName, Object target, Object[] 

arguments)



Access Control Management

Repository.OPTION_ACCESS_CONTROL_SUPPORTED - repository descriptor 

about supporting access control by particular implementation

Access Control Management (JSR-283, §16) : package javax.jcr.security

Privilege discovery

Assigning access control policies

Access control (JSR-283, §16.1) is exposed through a 

javax.jcr.security.AccessControlManager

acquired from the Session using

AccessControlManager Session.getAccessControlManager()



Privileges

A privilege (JSR-283, §16.2) represents the ability to perform a particular set of 

operations on a node. Each privilege is identified by a JCR name and may be 

aggregate and abstract (implementation specific):

jcr:all (is never abstract)

jcr:read

jcr:write

jcr:readAccessControl

jcr:modifyAccessControl

jcr:lockManagement

jcr:versionManagement

jcr:nodeTypeManagement

jcr:write

jcr:modifyProperties

jcr:addChildNodes

jcr:removeNode

jcr:removeChildNodes



Privileges discovery

Privilege[] AccessControlManager.getSupportedPrivileges(String absPath)

Privilege AccessControlManager.privilegeFromName(String privilegeName)

public interface javax.jcr.security.Privilege {

String Privilege.getName()

Boolean Privilege.isAbstract()

Boolean Privilege.isAggregate()

...

}

boolean AccessControlManager.hasPrivileges(String absPath, Privilege[] privileges)

Privilege[] AccessControlManager.getPrivileges(String absPath)



Access Control Policies

Access Control Policies (JSR-283, §16.3) are assigned to nodes for controlling 

the privileges granted to a user.

JCR provides a marker interface AccessControlPolicy and means to:

find which policies are available to be bound to a node

bind a policy to a node

get the policies bound to a given node (including transient modifications)

get the policies that affect access to a given node

unbind a policy from a node

Any effect that a policy has on a node is always reflected in the information 

returned by the privilege discovery methods.



Access Control Policies discovery

AccessControlPolicyIterator AccessControlManager.getApplicablePolicies(String absPath)

AccessControlPolicy[] AccessControlManager.getPolicies(String absPath)

AccessControlPolicy[] AccessControlManager.getEffectivePolicies(String absPath)

void AccessControlManager.setPolicy(String absPath, AccessControlPolicy policy)

void AccessControlManager.removePolicy(String absPath, AccessControlPolicy policy)



Named Access Control Policies

interface NamedAccessControlPolicy extends AccessControlPolicy {

String NamedAccessControlPolicy.getName();

}

Named Access Control Policy (JSR-283, §16.4) represents an opaque, 

immutable policy with a name, which must be a JCR name.



Access Control Lists (ACLs)

interface Access Control Lists extends AccessControlPolicy {

AccessControlEntry[] AccessControlList.getAccessControlEntries();

Boolean AccessControlList.addAccessControlEntry(Principal principal, Privilege[] privileges);

Void AccessControlList.removeAccessControlEntry(AccessControlEntry ace);

}

Access Control List (JSR-283, §16.5) represents a list of AccessControlEntry 

(ACE) objects. Before being bound to a node, the AccessControlList is mutable.

The user must have privileges:

jcr:modifyAccessControl to add or remove access control entries

jcr:readAccessControl to read access control entries from an 

AccessControlList



Access Control Entries (ACEs)

AccessControlEntry (JSR-283, §16.5.1) represents the association of one or 

more Privilege objects with a specific java.security.Principal.

public interface AccessControlEntry {

Principal getPrincipal();

Privilege[] getPrivileges();

}



Principals

The discovery (JSR-283, §16.5.7) of principals (java.security.Principal) is 

outside the scope of specification. 

public interface Principal {

public boolean equals(Object another);

public String toString();

public int hashCode();

public String getName();

}

public interface java.security.acl.Group extends Principal {

public boolean addMember(Principal user);

public boolean removeMember(Principal user);

public boolean isMember(Principal member);

public Enumeration<? extends Principal> members();

}



JCR 2.0 Security Authorization

Permissions

Capabilities

Access Control 

Management

Access Control 

Policies

Access Control 

Lists

Named Access 

Control Policies

Privileges

Principal 

Management

Restrictions

Principals

Access Control

Entries

Groups

mandatory

optional

mentioned



Contacts: vitaly.kiselev@axamit.com


